Coupled rotational dynamics of Saturn’s thermosphere and magnetosphere: a thermospheric modelling study
نویسندگان
چکیده
We use a numerical model of Saturn’s thermosphere to investigate the flow of angular momentum from the atmosphere to the magnetosphere. The thermosphere model is driven by Joule heating and ion drag calculated from a simple model of the magnetospheric plasma flows and a fixed model of the ionospheric conductivity. We describe an initial study in which our plasma flow model is fixed and find that this leads to several inconsistencies in our results. We thus describe an improved model in which the plasma flows are allowed to vary in response to the structure of the thermospheric winds. Using this improved model we are able to analyse in detail the mechanism by which angular momentum extracted from the thermosphere by the magnetosphere is replaced by transport from the lower atmosphere. Previously, this transport was believed to be dominated by vertical transport due to eddy viscosity. Our results suggest that transport within the upper atmosphere by meridional winds is a much more important mechanism. As a consequence of this, we find that the rotational structures of the thermosphere and magnetosphere are related in a more complex way than the eddy viscosity model implies. Rather than the thermosphere behaving as a passive component of the system, the thermosphere-magnetosphere interaction is shown to be a two-way process in which rotational structures develop mutually. As an example of this, we are able to show that thermospheric dynamics offer an explanation of the small degree of super-corotation that has been observed in the inner magnetosphere. These results call into question the usefulness of the effective Pedersen conductivity as a parameterisation of the neutral atmosphere. We suggest that a two-parameter model employing the true Pedersen conductivity and the true thermospheric rotation velocity may be a more accurate representation of the thermospheric behaviour. Correspondence to: C. G. A. Smith ([email protected])
منابع مشابه
Enhancement of thermospheric mass density by soft electron precipitation
[1] Enhancements in F-region electron density and temperature and bottomside Pedersen conductivity caused by soft electron precipitation are shown to enhance the Joule heating per unit mass and the mass density of the thermosphere at F-region altitudes. The results are derived from the coupled magnetosphere-ionosphere-thermosphere model (CMIT) including two types of causally specified soft elec...
متن کاملData Assimilation Using the Global Ionosphere-Thermosphere Model
We consider a data assimilation technique for coupled ionospheric and thermospheric dynamics. The Global Ionosphere-Thermosphere Model (GITM) is used to simulate the ionospheric and thermospheric dynamics, and evaluate the performance of the data assimilation scheme that estimates the ion densities and flow speeds. This estimation technique is based on the state dependent Riccati equation (SDRE...
متن کاملEffects of magnetospheric lobe cell convection on dayside upper thermospheric winds at high latitudes
This paper investigates a possible physical mechanism of the observed dayside high-latitude upper thermospheric wind using numerical simulations from the coupled magnetosphere-ionosphere-thermosphere (CMIT) model. Results show that the CMIT model is capable of reproducing the unexpected afternoon equatorward winds in the upper thermosphere observed by the High altitude Interferometer WIND obser...
متن کاملIonospheric control of the magnetospheric configuration: Thermospheric neutral winds
[1] In this study we present the first results from the University of Michigan’s coupled magnetosphere-ionosphere-thermosphere general circulation model. This code is a combination of the Michigan MHD model with the NCAR thermosphere-ionosphereelectrodynamics general circulation model (TIEGCM). The MHD code provides specification of the high-latitude ionospheric electric potential and the parti...
متن کاملRotational non-LTE in HCN in the thermosphere of Titan: Implications for the radiative cooling
Context. The thermal structure of Titan’s thermosphere is determined by the balance between several heating and cooling processes. These processes must be accurately modeled to correctly interpret the available measurements and enhance our understanding of the formation and evolution of this atmosphere. One of the most important thermospheric cooling process for Titan is emission in the HCN rot...
متن کامل